Preconditioned iterative solvers for immersed finite element methods

Frits de Prenter, Clemens Verhoosel & Harald van Brummelen

> Eindhoven University of Technology Department of Mechanical Engineering Energy Technology Fluid Dynamics

> > May 19, 2017

TU

1 Immersed finite element methods

2 Conditioning analysis and preconditioning

Concept

 \nearrow

K

Conforming FEM

Immersed FEM

Motivation (1): complex geometries

[C.-Z. Qin]

Sinthered glass beads

Trabecular bone

Motivation (2): time dependent domains

Transient simulation of prosthetic heart valve

Motivation (3): isogeometric analysis (IGA)

External flow around CAD-geometry

IGA on trimmed CAD-geometries

Domain

$$\begin{aligned} \mathsf{a}(\mathsf{v},\mathsf{u}) &= \int_{\Omega} \nabla \mathsf{v} \cdot \nabla \mathsf{u} \mathsf{d} \mathsf{V} \\ \mathsf{b}(\mathsf{v}) &= \int_{\Omega} \mathsf{v} \mathsf{f} \mathsf{d} \mathsf{V} + \int_{\mathsf{\Gamma}^{\mathsf{N}}} \mathsf{v} \mathsf{g}^{\mathsf{N}} \mathsf{d} \mathsf{S} \end{aligned}$$

strong
$$\begin{cases} -\Delta u = f \text{ in } \Omega \\ u = g^{D} \text{ on } \Gamma^{D} \subset \partial \Omega \\ n \cdot \nabla u = g^{N} \text{ on } \Gamma^{N} \subset \partial \Omega \end{cases}$$

weak
$$\begin{cases} \text{ find } w^{h} \in \mathcal{V}_{0}^{h}(\Omega) \subset \mathcal{H}_{0}^{1}(\Omega) \text{ s.t. }: \\ a(v,w) = b(v) - a(v,q) \\ \text{ for all } v^{h} \in \mathcal{V}_{0}^{h}(\Omega) \subset \mathcal{H}_{0}^{1}(\Omega) \end{cases}$$

Conforming FEM

$$\begin{aligned} \mathsf{a}(\mathsf{v},\mathsf{u}) &= \int_{\Omega} \nabla \mathsf{v} \cdot \nabla \mathsf{u} \mathsf{d} \mathsf{V} \\ \mathsf{b}(\mathsf{v}) &= \int_{\Omega} \mathsf{v} \mathsf{f} \mathsf{d} \mathsf{V} + \int_{\Gamma^N} \mathsf{v} \mathsf{g}^N \mathsf{d} \mathsf{S} \end{aligned}$$

Immersed FEM

$$\begin{aligned} a(v,u) &= \int_{\Omega} \nabla v \cdot \nabla u dV + \int_{\Gamma^{D}} -v(n \cdot \nabla u) dS \\ b(v) &= \int_{\Omega} v f dV + \int_{\Gamma^{N}} v g^{N} dS \end{aligned}$$

Immersed FEM

$$\begin{aligned} \mathsf{a}(\mathsf{v},\mathsf{u}) &= \int_{\Omega} \nabla \mathsf{v} \cdot \nabla \mathsf{u} \mathsf{d} \mathsf{V} + \int_{\Gamma^D} -\mathsf{v}(\mathsf{n} \cdot \nabla \mathsf{u}) - (\mathsf{n} \cdot \nabla \mathsf{v}) \mathsf{u} \mathsf{d} \mathsf{S} \\ \mathsf{b}(\mathsf{v}) &= \int_{\Omega} \mathsf{v} \mathsf{f} \mathsf{d} \mathsf{V} + \int_{\Gamma^N} \mathsf{v} \mathsf{g}^N \mathsf{d} \mathsf{S} + \int_{\Gamma^D} -(\mathsf{n} \cdot \nabla \mathsf{v}) \mathsf{g}^D \mathsf{d} \mathsf{S} \end{aligned}$$

$$a(v, u) = \int_{\Omega} \nabla v \cdot \nabla u dV + \int_{\Gamma^{D}} -v(n \cdot \nabla u) - (n \cdot \nabla v) u dS$$

$$b(v) = \int_{\Omega} v f dV + \int_{\Gamma^{N}} v g^{N} dS + \int_{\Gamma^{D}} -(n \cdot \nabla v) g^{D} dS$$

Immersed FEM

$$\begin{aligned} a(v,u) &= \int_{\Omega} \nabla v \cdot \nabla u dV + \int_{\Gamma^{D}} -v(n \cdot \nabla u) - (n \cdot \nabla v)u + \beta v u dS \\ b(v) &= \int_{\Omega} v f dV + \int_{\Gamma^{N}} v g^{N} dS + \int_{\Gamma^{D}} -(n \cdot \nabla v)g^{D} + \beta v g^{D} dS \end{aligned}$$

Integration of trimmed elements

[C.V. Verhoosel 2015]

Static elasticity problems

[Ruess 2013]

[Schillinger 2012]

[Rank 2012]

Dynamic elasticity problems

Grid

Initial condition

Large Eddy Simulations (LES)

[F. Xu 2016]

Variational Multiscale modeling of Navier-Stokes

Transient flow problems

Von Karman vortex street in Navier-Stokes

1 Immersed finite element methods

2 Conditioning analysis and preconditioning

From weak form to linear system

function
$$v^h (= \mathbf{\Phi}^T \mathbf{v}) \Leftrightarrow \mathbf{v}$$
 coefficient vector
weak form $a(v^h, u^h) = b(v^h) \Leftrightarrow \mathbf{A}\mathbf{u} = \mathbf{b}$ linear system
condition number: $\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$

$$\|\mathbf{A}\| = \max_{\mathbf{v}\neq 0} \frac{\|\mathbf{A}\mathbf{v}\|}{\|\mathbf{v}\|} = \max_{\|\mathbf{v}\|=1} \left\| a\left(\mathbf{\Phi}, v^{h}\right) \right\|$$

SPD systems :
$$\max_{\|\mathbf{v}\|=1} \mathbf{v}^{T} \mathbf{A} \mathbf{v} = \max_{\|\mathbf{v}\|=1} a(v^{h}, v^{h})$$

From weak form to linear system function $v^h (= \mathbf{\Phi}^T \mathbf{v}) \Leftrightarrow \mathbf{v}$ coefficient vector weak form $a(v^h, u^h) = b(v^h) \Leftrightarrow \mathbf{A}\mathbf{u} = \mathbf{b}$ linear system condition number: $\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$

$$\|\mathbf{A}^{-1}\| = \max_{\mathbf{v} \neq 0} \frac{\|\mathbf{v}\|}{\|\mathbf{A}\mathbf{v}\|} = \max_{\|\mathbf{v}\|=1} \frac{1}{\|a(\mathbf{\Phi}, v^h)\|}$$

SPD systems :
$$\max_{\|\mathbf{v}\|=1} \frac{1}{\mathbf{v}^T \mathbf{A} \mathbf{v}} = \max_{\|\mathbf{v}\|=1} \frac{1}{a(v^h, v^h)}$$

Verification of conditioning analysis

Domain:

Experiment

- Domain rotated over grid
- Different discretizations of the same problem with the same mesh size
- κ (condition number) and η (volume fraction) at every separate rotation

Verification of conditioning analysis

Experiment

- Domain rotated over grid
- Different discretizations of the same problem with the same mesh size
- κ (condition number) and η (volume fraction) at every separate rotation

Verification of conditioning analysis

Experiment

- Domain rotated over grid
- Different discretizations of the same problem with the same mesh size
- κ (condition number) and η (volume fraction) at every separate rotation

Preconditioning concept

Problem analysis

Functions v^h and corresponding coefficient vectors \mathbf{v} with:

$$v^h \ll \mathbf{v}$$

(1)

Preconditioning the space

- Replace basis $oldsymbol{\Phi}$ by the manipulated basis $ar{oldsymbol{\Phi}} = oldsymbol{S}oldsymbol{\Phi}$
- For nonsingular **S** the bases $oldsymbol{\Phi}$ and $oldsymbol{ar{\Phi}}$ span the same space
- Choose matrix **S** such that the problem in (1) is precluded

Implementation

The preconditioned system becomes:

$$\mathbf{S}\mathbf{A}\mathbf{S}^{\mathsf{T}}\mathbf{\bar{u}} = \mathbf{S}\mathbf{b}, \quad \mathbf{u} = \mathbf{S}^{\mathsf{T}}\mathbf{\bar{u}}$$

This has the same eigenvalues as the left preconditioned system:

$$S^T SAu = S^T Sb$$

Preconditioning concept

Problem analysis

Functions v^h and corresponding coefficient vectors **v** with:

$$v^h \ll \mathbf{v}$$

Preconditioning the space

- Replace basis $oldsymbol{\Phi}$ by the manipulated basis $oldsymbol{ar{\Phi}} = oldsymbol{S}oldsymbol{\Phi}$
- For nonsingular **S** the bases $oldsymbol{\Phi}$ and $oldsymbol{ar{\Phi}}$ span the same space
- Choose matrix **S** such that the problem in (1) is precluded

Implementation

The preconditioned system becomes:

$$\mathbf{S}\mathbf{A}\mathbf{S}^{\mathsf{T}}\mathbf{\bar{u}} = \mathbf{S}\mathbf{b}, \quad \mathbf{u} = \mathbf{S}^{\mathsf{T}}\mathbf{\bar{u}}$$

This has the same eigenvalues as the left preconditioned system:

$$S^T SAu = S^T Sb$$

Preconditioning concept

Problem analysis

Functions v^h and corresponding coefficient vectors **v** with:

$$v^h \ll \mathbf{v}$$

Preconditioning the space

- Replace basis $oldsymbol{\Phi}$ by the manipulated basis $oldsymbol{ar{\Phi}} = oldsymbol{S}oldsymbol{\Phi}$
- For nonsingular **S** the bases Φ and $\bar{\Phi}$ span the same space
- Choose matrix **S** such that the problem in (1) is precluded

Implementation

The preconditioned system becomes:

$$\mathbf{S}\mathbf{A}\mathbf{S}^{T}\mathbf{\bar{u}} = \mathbf{S}\mathbf{b}, \quad \mathbf{u} = \mathbf{S}^{T}\mathbf{\bar{u}}$$

This has the same eigenvalues as the left preconditioned system:

$$S^T SAu = S^T Sb$$

What **S** does (1): Scaling

Original basis Φ

Small basis functions

If a basis function ϕ is small, then the (unit) vector $\|\mathbf{w}\| = 1$ corresponding to $w^h = \phi$ yields $\|\mathbf{A}\mathbf{w}\| \ll 1$ $\|\mathbf{A}^{-1}\| = \max_{\mathbf{v}\neq 0} \frac{\|\mathbf{v}\|}{\|\mathbf{A}\mathbf{v}\|} \ge \frac{\|\mathbf{w}\|}{\|\mathbf{A}\mathbf{w}\|} \gg 1$

What **S** does (1): Scaling

Quasi linear dependencies

If basis functions $\tilde{\phi}_1$ and $\tilde{\phi}_2$ are very similar, then the vector $\|\mathbf{w}\| = \sqrt{2}$ corresponding to $w^h = \tilde{\phi}_1 - \tilde{\phi}_2$ yields $\|\mathbf{DADw}\| \ll 1$

$$\|\mathsf{DAD}^{-1}\| = \max_{\mathsf{v}\neq 0} \frac{\|\mathsf{v}\|}{\|\mathsf{DAD}\mathsf{v}\|} \ge \frac{\|\mathsf{w}\|}{\|\mathsf{DAD}\mathsf{w}\|} \gg 1$$

Quasi linear dependencies

If basis functions $\widetilde{\phi}_1$ and $\widetilde{\phi}_2$ are very similar, then the vector $\|\mathbf{w}\| = \sqrt{2}$ corresponding to $w^h = \widetilde{\phi}_1 - \widetilde{\phi}_2$ yields $\|\mathbf{DADw}\| \ll 1$

$$\|\mathbf{D}\mathbf{A}\mathbf{D}^{-1}\| = \max_{\mathbf{v}\neq 0} \frac{\|\mathbf{v}\|}{\|\mathbf{D}\mathbf{A}\mathbf{D}\mathbf{v}\|} \ge \frac{\|\mathbf{w}\|}{\|\mathbf{D}\mathbf{A}\mathbf{D}\mathbf{w}\|} \gg 1$$

Quasi linear dependencies

If basis functions $\widetilde{\phi}_1$ and $\widetilde{\phi}_2$ are very similar, then the vector $\|\mathbf{w}\| = \sqrt{2}$ corresponding to $w^h = \widetilde{\phi}_1 - \widetilde{\phi}_2$ yields $\|\mathbf{DADw}\| \ll 1$

$$\|\mathbf{D}\mathbf{A}\mathbf{D}^{-1}\| = \max_{\mathbf{v}\neq 0} \frac{\|\mathbf{v}\|}{\|\mathbf{D}\mathbf{A}\mathbf{D}\mathbf{v}\|} \ge \frac{\|\mathbf{w}\|}{\|\mathbf{D}\mathbf{A}\mathbf{D}\mathbf{w}\|} \gg 1$$

Original basis Φ

Quasi linear dependencies on nonsmooth bases

Original basis $\pmb{\Phi}$

Restricted basis $\pmb{\Phi}$

Quasi linear dependencies on nonsmooth bases

Scaled basis $\widetilde{\boldsymbol{\Phi}} = \boldsymbol{D}\boldsymbol{\Phi}$

Restricted basis $\pmb{\Phi}$

Quasi linear dependencies on nonsmooth bases

Scaled basis $\widetilde{\boldsymbol{\Phi}} = \boldsymbol{D}\boldsymbol{\Phi}$

Orthonormalized basis $\overline{\mathbf{\Phi}} = \mathbf{S}\mathbf{\Phi}$

Quasi linear dependencies on nonsmooth bases

Interpretation

Interpretation

Interpretation

Interpretation

Interpretation

Additive-Schwarz preconditioning

Results for flow problems

Domain:

Results for flow problems

p = 2

Stokes

Navier-Stokes

Results for flow problems

p = 3

Stokes

Navier-Stokes

Results for elasticity problems

John Jomo Collaboration with: Stefan Kollmannsberger Ernst Rank

Technische Universität München

Results for elasticity problems

relative preconditioned residual

energy error

John Jomo Collaboration with: Stefan Kollmannsberger Ernst Rank ТП

Technische Universität München

Conclusion

Summary

- Introdution to immersed finite elements methods
- Conditioning analysis
- Effective tailored preconditioner

Future work (in immersed methods)

- Preconditioning
 - · Combinations with other (multigrid) preconditioners
 - Parallel and meshless implementations
- Explicit dynamics
- Compatible (divergence free) discretizations
- Multiphase flows

TU/e Landower Endower Technology Eindhoven Multiscale Institute

Advanced School on

Immersed Methods

Fundamental modelling aspects Boundary and coupling conditions Numerical integration techniques Ghost penalty Conditioning and solution methods Image-based modelling Application in fluid and solid mechanics Application in isogeometric analysis Apolication in toooleve potimization

Registration before October 31st 2017 Website: <u>www.tue.nl/emiworkshop</u> Contact: <u>emi@tue.nl</u>

Eindhoven University of Technology

A: Lecturers

Alexander Düster Hamburg University of Technology

Mats Larson Umeå University Ernst Rank

Technical University of Munich Martin Ruess

University of Glasgow

Ole Sigmund Technical University of Denmark

Clemens Verhoosel Eindhoven University of Technology

Technical University of Denmark

